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A B S T R A C T

In recent years, support for nature-based climate solutions to reduce climate change has grown
in response to our inability to curb fossil fuel emissions through behavioral change. Nature-based
solutions reduce atmospheric CO2 by managing, restoring, and/or conserving ecosystems, which then
act as carbon reservoirs by storing the CO2 in soils and woody biomass. An important aspect of the
future success of these strategies is the ability to accurately quantify carbon dioxide turbulent flux
(FCO2) under different ecological conditions.

In this study, we predicted FCO2 at 44 core terrestrial sites across the National Ecological
Observatory Network in the United States using 35 environmental drivers and site-specific variables as
predictors. We compared the accuracy of seven different machine learning algorithms and found that
Extreme Gradient Boosting (XGBoost) consistently produced the most accurate predictions (Root
Mean Squared Error of 1.81𝜇molm−2s−1, R2 of 0.86). The model showed excellent performance
testing on sites that are ecologically similar to other sites (the Mid Atlantic, New England, and the
Rocky Mountains), and poorer performance at sites with fewer ecological similarities to other sites in
the data (Pacific Northwest, Florida, and Puerto Rico). The results show strong potential for machine
learning-based models to make more skillful predictions than state-of-the-art process-based models,
being able to estimate the multi-year mean carbon balance to within an error ± 50gCm−2y−1 for 29
of our 44 test sites.

1. Introduction
Rising levels of atmospheric CO2 are the primary

cause of climate change (Lee et al., 2023). Human-caused
emissions of CO2 from fossil fuel burning and land use
change are too large to be fully offset by the uptake
of 𝐶𝑂2 that occurs by terrestrial ecosystems and the
oceans (Friedlingstein et al., 2023). The important role
of terrestrial ecosystems in the global carbon cycle has
been relatively well-understood for decades (Wofsy and
Harris, 2002; Schimel et al., 2001). One strategy to reduce
future climate change is to manage, restore, or otherwise
conserve ecosystems so that they remove even more CO2
from the atmosphere and store it in slow-turnover carbon
reservoirs, e.g. in the soil or woody biomass. Support for
these so-called natural climate solutions (also known as
nature-based climate solutions) has increased in recent
years (Fargione et al., 2018; Griscom et al., 2017; Bossio
et al., 2020), in part because efforts to reduce fossil
fuel emissions have not yet been successful. However, a
prerequisite to strategically implementing natural climate
solution strategies is a thorough reliable estimation of the
carbon uptake potential of different ecosystem types, and
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how this varies in space and time, e.g., with site factors and
year-to-year variation in weather.

Hemes et al. (2021) have argued that ecosystem-scale
CO2 flux measurements can play an important role in
developing strategies for, and evaluating natural climate
solutions. For example, Hollinger et al. (2021) noted the
value of CO2 flux measurements for quantifying not only
the magnitude of CO2 uptake by an evergreen forest in
Maine but also the persistence of this strong sink over 25
years of measurements. In this case most of the annual
net uptake of CO2 ended up in woody biomass which can
sequester atmospheric carbon for decades to centuries.
Both Hemes and Hollinger also highlighted the value of
CO2 flux measurements in the context of natural climate
solutions. Here, it was shown that these measurements are
useful for estimating the rates of carbon sequestration in
hard-to-observe storage pools such as soils.

Tower-based, ecosystem-scale CO2 flux measurements
quantify the exchange of turbulence flux of CO2 (FCO2,
measured in 𝜇molm−2s−1) between the land surface and
the atmosphere. In short, FCO2 measures how much CO2
is moving into or out of an ecosystem, per unit area and
per unit time. During daytime hours, most ecosystems
are a strong sink for CO2 (negative FCO2, following the
micrometeorological sign convention), as they remove CO2
from the atmosphere through the process of photosynthesis.
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By comparison, during the night, ecosystems are generally
a moderate source of CO2 (positive FCO2), as they release
CO2 back into the atmosphere through the process of
respiration. FCO2 is measured using a method known as
eddy covariance (EC) (Baldocchi, 2020). Eddy covariance
measurements are continuous in time (24 hours a day, 7
days a week, 365 days a year) and are generally reported
at an hourly or half-hourly temporal resolution. Global
networks of eddy covariance flux towers collect in situ
carbon flux measurements, providing information on
photosynthesis dynamics across different ecosystems and
under various environmental conditions. Currently, FCO2
is measured at hundreds of research sites across the USA,
with 385 of these sites being members of the AmeriFlux
Network (Novick et al., 2018; Chu et al., 2023). Indeed,
the driving motivation for the establishment of AmeriFlux
almost three decades ago was to measure the carbon balance
of different ecosystems, and more specifically to better
understand the distribution of CO2 sinks and sources across
the continent (United States Department of Energy, 2023).

While these measurements run continuously at high
frequency (e.g. at 5 Hz), practical limitations such as
technical failures, instrument malfunction, and the necessity
for filtering out data with low turbulent conditions can lead
to gaps in the collected data. This in turn results in the
compromised validity of the measured fluxes. Moreover,
there is no attempt to standardize the measurements across
sites within the AmeriFlux network, meaning that when
measurements are available, they may be more or less
reliable than another site.

From the perspective of understanding the distribution
of CO2 sinks across the entire continent, the sampling
provided by AmeriFlux is woefully inadequate; even
assuming that all 385 AmeriFlux sites are currently
active, this equates to approximately 1 flux measurement
site every 25,000 km2. Therefore, extrapolation and
upscaling from individual sites to fine resolutions and
regional and continental scales must be done using either
process-based or statistically-based models. The former
approach is attractive because these simulation models
are based on state-of-the-art understanding of how the
carbon cycle works. However, parameterization and initial
conditions remain outstanding challenges, and past model
validation efforts have highlighted serious model errors.
By comparison, the latter approach is unattractive because
many of these statistical approaches are essentially black
boxes from which it is impossible to verify process-level
representation. Standardization of inputs for statistical
models is also a challenge, and, to the best of our
knowledge, validation of model predictions has generally
not been conducted against independent datasets.

An extensive model-data comparison project of over 20
ecosystem models conducted under the North American
Carbon Program found that process-based models generally
performed poorly in representing site-level carbon flux
dynamics across sites with varying land cover. Specifically,
substantial model errors in representing FCO2 were found

at annual, seasonal, and diurnal time scales (Dietze et al.,
2011; Schwalm et al., 2010); models misrepresented the
inter-annual variability in observed CO2 uptake (Keenan
et al., 2012); models did not properly represent phenological
transitions in Spring or Fall (Richardson et al., 2012a); and
models could not predict photosynthetic uptake within the
uncertainty of observations (Schaefer et al., 2012). These
results lead to valid questions about the viability of using
process-based models to evaluate natural climate solution
strategies.

Statistically-based upscaling of FCO2 began about
two decades ago with the pioneering work of Papale and
Valentini (2003). They used an artificial neural network,
trained with CO2 flux data from 16 measurement sites in
Europe to calibrate a simulation model to predict CO2
fluxes of European forests at 1 km resolution. Several years
later, (Xiao et al., 2008) calibrated a modified regression
tree model to FCO2 measurements across the AmeriFlux
network, using satellite observed greenness indicators,
such as vegetation indices, leaf area index, and fraction
of observed photosynthetically active radiation (Kang
et al., 2023). The sophistication of these kinds of upscaling
efforts has matured over the last 15 years. The current
state of the art is probably defined by the FLUXCOM
project (Jung et al., 2020), which uses satellite remote
sensing and gridded meteorological products to calibrate a
model trained on FCO2 measurements from sites around
the world.

However, a challenge with past efforts to upscale
site-level measurements is the lack of standardization in
measurement protocols across sites. For example, across
the AmeriFlux network, the choice of instrument setup and
configuration, and even the details of flux data processing
and corrections (which are critically important), may be
different for each site. Furthermore, key instrumentation
principles (e.g., open vs. closed path gas analyzer or sonic
anemometer geometry), installation protocols (e.g., depth
profiles of soil temperature and moisture measurements),
measured and calibrated quantities (gravimetric vs.
volumetric soil water content vs. soil water potential),
and even units (hPa vs. kPa for vapor pressure deficit –
easily converted, but also easily incorrectly reported or
interpreted) are not consistent across sites. In particular,
this lack of consistency of site variables across sites is a
major barrier for any predictive modeling methods which
use machine learning techniques.

While AmeriFlux has been characterized as a “coalition
of the willing” (Novick et al., 2018), the USA’s National
Ecological Observatory Network (NEON) was specifically
established to “collect long-term open access ecological
data to better understand how U.S. ecosystems are
changing” (Battelle, 2024). Implicit in this mission
statement is the need for standardization of measurement
protocols and techniques across sites. NEON sites are
strategically located, following a clustering algorithm
to identify and group distinct regions of vegetation,
landforms, and ecosystem dynamics into 20 different
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Figure 1: A map of the NEON core terrestrial sites and their locations within the 19 ecological domains.

domains, as shown in Figure 1. Within each domain, at one
or more monitoring sites, standardized measurements of
environmental drivers (weather, solar radiation, etc.) are
conducted along with ecosystem-level measurements of
FCO2 and other quantities measured by eddy covariance
(e.g. sensible and latent heat fluxes). This standardization
opens up the possibility to use a machine learning algorithm
to predict site-level FCO2 without relying on gridded or
reanalysis products as is necessary when using sites from
Ameriflux as a whole. Thus, the network of NEON sites
represents an opportunity to train models on observational
data across numerous sites which might be viewed as
analogous to a model emulator (Fer et al., 2018). The
key difference being that this model is trained on real
observations rather than the output of a simulation model.

In this paper we investigate the potential to use
cutting-edge machine learning algorithms in conjunction
with standardized CO2 flux measurements and
environmental data (“drivers”) from NEON towers to make
predictions about the half-hourly, daily, and annual FCO2 in
ecosystems across the continental US. We implement seven
machine learning algorithms, of varying complexities,
across two experimental scenarios: (1) A randomized
10-fold cross-validation, and (2) A cross-validation
stratified by site, which we refer to as ‘Leave-one-site-out’
(L1SO). In this scenario, a single site is left out of the
training data and the resulting trained model is used to
predict the FCO2 values of this ‘unknown’ site (unknown
to the model, not the experimenters). The first scenario
assesses how well we can gap-fill missing FCO2 values
with a machine learning model when other values from
that site are known, while the second assesses how well
we could predict a completely unseen site based only on
the environmental drivers. In each scenario, we found that
the lowest error was obtained using an optimized Extreme
Gradient-Boosted Tree (XGBoost) model. Our analysis

shows that XGBoost can predict FCO2 values to within
a root mean squared error of 1.81𝜇molm−2s−1, with our
predictions having an R-squared of 0.86 with the actual
measurements. The L1SO results predict FCO2 to within a
root mean squared error of 2.45𝜇molm−2s−1, however these
results varied greatly (0.66–6.22𝜇molm−2s−1) depending
on the domain of the site and its similarity to other sites
in the dataset. We use our optimal model to gap-fill a
complete FCO2 dataset and provide it online for use by
future researchers.

2. Methods
Our experiments compared the performance of seven

machine learning algorithms to predict half-hourly FCO2
measurements collected between January 1st, 2016 and
June 30, 2022. The experimental details are all provided in
the following section and the code for the experiments is
available at: https://github.com/jsl339/AmeriFlux.

2.1. Data
There are 47 NEON core terrestrial sites located across

the U.S. and Puerto Rico, which strategically represent
a range of vegetation, climate, and ecosystems divided
into 20 different ecological domains as shown in Figure 1.
Our experiments used data collected at 44 sites, as three
sites–Marvin Klemme Range Research Station (OAES),
Mountain Lake Biological Station (MLBS), and Puu
Makaala Natural Area Reserve (PUUM)–were removed
from the analysis due to inconsistencies in predictor
variables, missing flux measurements, and errors arising
during preprocessing. With these sites removed, our 44
sites represented 19 out of the 20 ecological domains (see
National Ecological Observatory Network (NEON) (2024)
for general information about the data product).
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We preprocessed the data using the R package
REddyproc, as is the standard approach for gap-filling
and u* filtering of carbon flux values. We used the U50
threshold to filter our u* values.

Table 1 shows a general explanation and summary
statistics for the environmental drivers that we used as
feature variables to learn our models. The data were sourced
from 3 locations: AmeriFlux, the Phenocam Network,
and MODIS satellite imagery (Richardson et al., 2018;
Seyednasrollah et al., 2019; United States Department of
Energy, 2023).

Each site was assigned both a primary and secondary
vegetation type from the following categories:

1. Agricultural (AG)
2. Deciduous Broadleaf (DB)
3. Evergreen Broadleaf (EB)
4. Evergreen Needleleaf (EN)
5. Grassland (GR)
6. Shrub (SH)
7. Tundra (TN)

After preprocessing, our final dataset consisted of
961,340 observations unevenly divided among the 44
NEON sites.

2.2. Experimental design
We compared the predictive performance of 6 machine

learning algorithms (explained in section 2.3 below) in two
experimental scenarios. In the first experimental scenario,
we performed 10-fold cross validation on the data. This
means that the data were randomly divided into 10 ‘folds’,
with each containing approximately 10% of the data. The
models were then trained using 9 folds (90% of the available
data) and tested on the remaining fold. This process was
repeated so that each fold was used in the training set 9
times and appeared as the test set once (see Figure 2a for an
illustrated explanation). The performance of each algorithm
was reported as the average across the 10 different runs. We
note that the data were divided into the same 10 folds for
each predictive algorithm.

K-fold cross-validation is a common technique in the
testing and comparison of machine learning algorithms
as it removes selection bias (whether deliberate or not),
and demonstrates the ability of the models to generalize to
unseen data (Rodriguez et al., 2009).

In the second experimental scenario, which we will refer
to as Leave-one-site-out cross-validation (L1SO CV), we
began by partitioning the data by site, resulting in 44 uneven
groups of data. We then employed a similar process to
scenario one, where the models were trained on all-but-one
group and tested on the remaining group (an example is
shown in Figure 2b). This was repeated so that each site
was used as the test data once, and therefore the stated
performance metrics are the average of the 44 models fitted
and tested.

The L1SO CV experiments present an inherently more
difficult problem than the prior scenario as a predictive

model significantly benefits from learning from data
belonging to the test site. These experiments were included
to replicate a situation where a site has no prior carbon flux
recordings, i.e. it could be a new site or the instrumentation
might not be functioning correctly. In addition, this
experimental setup also tests whether we might be able to
make a minimal set of measurements at a site with lower
standardization in measurement protocols in order to predict
the FCO2. This would be helpful for carbon accounting
purposes and nature-based carbon solutions, and also to
enable a benchmark for land surface model simulations and
checking existing datasets.

The performance of each model was assessed using 2
evaluation metrics—Root Mean Squared Error (RMSE) and
the Coefficient of Determination (𝑅2). The RMSE is the
square root of the average of the squared prediction errors
over all of the data in the test set. Specifically,

𝑅𝑀𝑆𝐸(𝑦̂, 𝑦) =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
(𝑦𝑖 − 𝑦𝑖)2

Where 𝑦 is the measured (true) value and 𝑦̂ is the predicted
value for a test set of size 𝑁 . Due to the squared component
of the metric, the RMSE is sensitive to large errors in any of
the individual predictions.

The 𝑅2 evaluation metric is a measure of the goodness-
of-fit of the linear model found by regressing the predicted
values against the true values. It is calculated as:

𝑅2(𝑦̂, 𝑦) = 1 −
∑𝑁

𝑖=1(𝑦𝑖 − 𝑦𝑖)
∑𝑁

𝑖=1(𝑦𝑖 − 𝑦̄)

In contrast to RMSE, 𝑅2 is not sensitive to large errors
in any of the individual predictions as it measures the
amount of total variance accounted for by the predictions.
When used together, these metrics complement each
other and provide a more comprehensive picture of the
performance of the algorithms. Each metric can then be
analyzed on half-hourly, daily, and annual timescales.
Ensuring accurate model predictions on an annual scale is
important for reliable carbon accounting. However, it is also
critical to evaluate model performance at finer temporal
resolutions, such as half-hourly and daily scales, to ensure
that our models produce accurate annual predictions for
scientifically sound reasons. In order to produce meaningful
predictions of annual sums of FCO2 for each test site, we
must first use models optimized in the 10-fold experimental
setting to fill in missing FCO2 values for each site before
making predictions per site in the L1SO experimental
setting.

2.3. Machine Learning Models
We compared the performance of 6 different machine

learning models on predicting carbon dioxide flux. They are:

1. Linear Regression (all predictors): This is a linear
model including all of the variables using the

Uyekawa, et al.: Preprint submitted to Elsevier Page 4 of 16



ML-based modeling of C02 exchange

Table 1
Environmental drivers (feature variables) used as input to our machine learning models to predict carbon dioxide flux

Variable Description Source Mean Min Max
DOY Day Of Year Ameriflux/NEON 0.49 0 1
HOUR Hour Of Day Ameriflux/NEON 0.49 0 1
TS_1_1_1 Soil Temperature Depth 1 Ameriflux/NEON 12.64 -29.82 56.15
TS_1_2_1 Soil Temperature Depth 2 Ameriflux/NEON 12.17 -29.85 52.52
PPFD Photosynthetic Photon Flux Density Ameriflux/NEON 563.72 -2.27 2772.22
TAIR Air Temperature Ameriflux/NEON 12.14 -36.39 41.85
VPD Vapor Pressure Deficit Ameriflux/NEON 8.48 -0.57 74.49
SWC_1_1_1 Soil Water Content Ameriflux/NEON 19.74 0.25 40.96
PPFD_OUT Photosynthetic Photon Flux Density, Outgoing Ameriflux/NEON 60.92 -2.29 2054.03
PPFD_BC_IN_1_1_1 Photosynthetic Photon Flux Density, Below Canopy Incoming Ameriflux/NEON 193.89 -9.44 2638.5
RH Relative Humidity Ameriflux/NEON 57.03 1.35 101.95
NETRAD Net Radiation Ameriflux/NEON 152.55 -308.42 1056.68
USTAR Friction velocity Ameriflux/NEON 0.46 0.05 2.78
GCC_50 Green Chromatic Coordinate, 50th Quantile Phenocam 0.36 0.29 0.46
RCC_50 Red Chromatic Coordinate, 50th Quantile Phenocam 0.4 0.26 0.58
MAT_DAYMET Mean Annual Temperature DAYMET 9.7 -11.6 26.1
MAP_DAYMET Mean Annual Precipitation DAYMET 872.85 86 2290
PVEG Primary Vegetation Type Phenocam categorical
SVEG Secondary Vegetation Type Phenocam categorical
LW_OUT Longwave Radiation, Outgoing Ameriflux/NEON 378.09 165.3 694.8
DAILY PRECIPITATION Daily Precipitation Ameriflux/NEON 2.2 0 225.19
PRCP1WEEK Cummulative Precipitation 1 Week Ameriflux/NEON 16.42 0 262.73
PRCP2WEEK Cummulative Precipitation 2 Week Ameriflux/NEON 33.59 0 324.87
NDVI Normalized Difference Vegetation Index MODIS 0.47 -0.2 0.96
EVI Enhanced Vegetation Index MODIS 0.26 -0.13 0.76
LAT Latitude Phenocam 41.19 17.97 71.28
LON Longitude Phenocam -101.8 -156.62 -66.87
ELEV Elevation Phenocam 813.93 7 3493
DOMAIN NEON Field Site Domain Phenocam categorical
organic_C Total Organic Carbon Stock in Soil Profile Ameriflux/NEON 255.87 5 1339
total_N Total Nitrogen Stock in Soil Profile Ameriflux/NEON 13.47 0.3 43.6
O_thickness Total Thickness of Organic Horizon Ameriflux/NEON 3.49 0 110
A_pH pH of A Horizon Ameriflux/NEON 6.03 0 8.5
A_sand Texture of A Horizon (% Sand) Ameriflux/NEON 47.78 0 97
A_silt Texture of A Horizon (% Silt) Ameriflux/NEON 32.57 0 61.9
A_clay Texture of A Horizon (% Clay) Ameriflux/NEON 15.08 0 55.3
A_BD Bulk Density of A Horizon Ameriflux/NEON 0.93 0 1.59

Test Training

Fold 1

Fold 2

Fold 3

Fold 4

Fold 5

Fold 6

Fold 7

Fold 8

Fold 9

Fold 10

(a) 10-fold Cross Validation

PR-xGU

PR-xLA

US-xAB

Test Training

Fold 1

Fold 2

US-xAB

Fold 3

Fold 4 US-xBA

US-xAB US-xBAFold 5

(b) L1SO Cross Validation

Figure 2: A visual explanation of the two cross-validation techniques used in our experiments.
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maximum likelihood estimates for the coefficients.
Linear regression assumes a linear relationship
between the predictors and the response variable,
which is unlikely in complex modeling problems, but
does provide a baseline for the comparison of the
performance of other models.

2. Stepwise Linear Regression: This model began by
testing for the most significant single variable in a
linear regression model, and then iteratively added
variables and tested for greatest improvement. A
threshold number of selection variables was set to
15 for this forward selection technique. In this way,
we simplify the basic linear regression model to find
feature variables with greater importance for linear
prediction.

3. Decision Tree: A decision tree is a model based on
recursively splitting the data on values of variables
to maximize the difference between observations.
Decision trees are most effective on problems
where there is a non-linear relationship between the
predictors and response variable (Nie et al., 2020;
Vanli et al., 2019). The optimal tree depth was found
to be 10 which was found through cross-validation.

4. Random Forest: A random forest model (Breiman,
2001) is a bagged ensemble of decision trees. The
algorithm creates an uncorrelated forest of decision
trees by using random subsets of features in each tree.
When predicting a regression variable with a random
forest model, the overall prediction is the average of
the results of each of its constituent trees.

5. Extreme Gradient Boosting (XGBoost): The XGBoost
model (Chen and Guestrin, 2016) is a boosted
ensemble of 𝑛 underfit decision tree models. In
practice, a decision tree is fit the to data and the
errors in prediction are measured. Next, a second
decision tree is used to fit the errors of the first tree.
Then a third decision tree is fit to the errors of the
second tree, and we continue until we have 𝑛 trees
in our ensemble. The optimal number of trees in
our ensemble was found to be 2000. We also set
the number of rounds for early stopping to be 50,
and we used a learning rate of 0.05, max depth of
10, subsample ratio of 0.5, and subsample ratio of
columns for each node of 0.45. Finally we used the
histogram-optimized approximate greedy algorithm
for tree construction to optimize our XGBoost model.
All hyperparameters were optimized through 10-fold
cross-validation using an exhaustive grid search.

6. Neural Network (single-layer): A neural network is the
sum of weighted non-linear functions of the predictor
variables. This model is a single-layer neural network,
with 256 neurons in the hidden layer, and uses a
feed-forward architecture with ReLU activation. Early
stopping was implemented to prevent model over-
fitting, and training was performed with a data loader
with a batch size of 128. The learning rate was set to
0.0003, and the best performance was achieved with

no weight decay using the Adam optimizer. For more
information on the mathematics of neural networks,
see: James et al. (2021); Mahabbati et al. (2021).

7. Deep Neural Network: The model uses the same
mathematical structure as the single-layer neural
network, but increases the number of hidden layers
to 3, each consisting of 256 neurons. Compared to
the single-layer neural network, the increased depth
of the model increases the number of parameters to
learn, meaning the model is capable of modeling
more complex relationships, but also takes longer to
learn from the data.

3. Results
3.1. 10-fold cross-validation results

The results for fitting each model and testing on each
fold of the 10-fold cross-validaiton experiments are shown
in Table 2 (RMSE). The XGBoost model and deep Neural
Network were the only two models with a RMSE less than
2𝜇molm−2s−1. The strength of these models suggests that
there are non-linearities in the the relationships between the
environmental drivers and FCO2. It is important to note that
the XGBoost model outperformed our deep Neural Network
at each stage throughout model development, and in addition
the XGboost model requires significantly less training time
than either neural network.

After determining the optimal algorithm, we used the
trained XGBoost model to gap-fill all of the missing values
for each of the 44 sites. The resulting dataset, consisting
of 4,068,459 observations, is freely available at https://

zenodo.org/records/10719776 for use by other researchers in
the climate science community.

3.2. L1SO cross-validation results
The results for fitting each model and testing on each site

of the leave-one-site-out cross-validation experiments are
shown in Tables 3 (RMSE) and 4 (R2). Again, the XGBoost
model was superior to all others with a mean prediction
RMSE of 2.45𝜇molm−2s−1. This is 35% greater than the
RMSE of same model in the 10-fold cross-validation
experiments, demonstrating the substantial information
the model gains from seeing data from the test site in the
training set (as is the case in the 10-fold experiments).

The results also varied greatly between test sites–from
a RMSE of 0.66𝜇molm−2s−1 up to 6.22𝜇molm−2s−1.
The model performed best on Toolik (TOOL), as well as
other sites with Tundra as the primary vegetation–Barrow
Environmental Observatory (BARR), Healy (HEAL),
and Niwot Ridge Mountain Research Station (NIWO)–
suggesting that the environmental drivers for these sites
are highly similar. Another justification for lower model
RMSE across sites with Tundra primary vegetation is that
these sites in general experience smaller magnitude fluxes.
Random errors scale with flux magnitude, so it’s almost
inevitable that sites with higher magnitude fluxes will have
somewhat larger model-data mismatch.
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Table 2
Comparison of the RMSE and R2 in predicting FCO2 using seven machine learning models in a 10-fold cross-validation experimental
setting (values shown are the average across the 10 validation folds)

Linear reg Stepwise Decision Tree Random Forest XGB NN 1-layer NN deeper
RMSE 3.49 3.58 2.39 2.26 1.81 2.06 1.91

R2 0.48 0.46 0.76 0.77 0.86 0.82 0.85

Figure 3: The average RMSE (𝜇molm−2s−1) per domain for the leave-one-site-out experiments.

The model performed worst on Lajas Experimental
Station (LAJA), which is one of two sites in Puerto Rico,
and together these two represent the only two sites with
an evergreen broadleaf primary vegetation type. While we
cannot separate the domain and primary vegetation effects
here, we can say that our training data, which is mostly
from the United States mainland, does not generalize well
when predicting FCO2 in vastly different climates and
ecosystems.

A map of the average RMSE per domain is shown in
Figure 3.

3.3. XGBoost Feature Importance
The XGBoost algorithm has a built-in method for

calculating the importance of each feature variable based on
the amount that each feature’s split point improves model
performance. A plot of the twenty most important features
for prediction is shown in Figure 4.

There are two input features that are noticeably more
important to the model than others–EVI and net radiation.
This is interesting as these are not measurements taken
through site-level instrumentation, which suggests that we
can learn a lot about the FCO2 of a site just by knowing
the greenness and thermal radiation of the vegetation.
Furthermore, six of the ten most important variables are
continuous measurement variables, as opposed to the

domain or vegetation categorical variables, meaning the
model should generalize easier to any new sites of interest.

4. Discussion
In this section, we present a detailed discussion of the

results of the XGBoost model at the site- and domain-level.
We also analyze our results by vegetation type and how our
results look on an annual scale.

4.1. Comparison of 10-fold and L1SO
experimental results

By making predictions on each site in both 10-fold and
L1SO contexts, we are able to gain greater understanding
of model performance across the 44 NEON sites. We
partitioned our model’s 10-fold RMSE by site, and treated
a site’s average RMSE value as the irreducible error–that
is, error that can be attributed to variability in the dataset,
measurement errors, and the error inherent in using a model
to predict a physical process. From there, we compare this
irreducible error to the average RMSE values for each site
obtained through L1SO CV experiments and therefore
obtain an estimate of the amount of error attributable
to testing on an ‘unseen’ sight, which we call the L1SO
Remainder. A visualization of the baseline error and its
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Table 3
A comparison of the RMSE (𝜇molm−2s−1) in predicting FCO2 using seven machine learning models in a stratified leave-one-site-out
cross-validation experimental setting

Test Set Site Code Site Name Primary Vegtype Linear reg Stepwise Decision Tree Random Forest XGB NN 1-layer NN deeper
1 PR-xGU Guanica Forest (GUAN) EB 4.83 4.47 5.83 5.32 3.49 5.95 6.48
2 PR-xLA Lajas Experimental Station (LAJA) EB 7.52 6.99 7.60 6.68 6.22 6.02 6.60
3 US-xAB Abby Road (ABBY) EN 7.25 4.45 4.72 3.86 3.43 3.55 3.66
4 US-xBA Barrow Environmental Observatory (BARR) TN 135.35 1.30 1.51 1.49 0.86 2.91 0.89
5 US-xBL Blandy Experimental Farm (BLAN) DB 4.10 3.96 2.77 2.69 2.62 2.89 2.98
6 US-xBN Caribou Creek - Poker Flats Watershed (BONA) EN 14.61 2.41 2.12 2.01 1.93 2.70 1.92
7 US-xBR Bartlett Experimental Forest (BART) DB 5.21 4.41 3.33 3.06 2.77 3.13 3.06
8 US-xCL LBJ National Grassland (CLBJ) DB 5.19 4.17 4.38 4.16 3.88 4.11 3.31
9 US-xCP Central Plains Experimental Range (CPER) GR 4.24 2.47 1.38 1.29 1.22 1.60 1.48
10 US-xDC Dakota Coteau Field School (DCFS) GR 20.35 2.70 1.79 1.70 1.61 1.64 1.74
11 US-xDJ Delta Junction (DEJU) EN 5.52 2.28 2.05 1.64 1.44 1.56 1.44
12 US-xDL Dead Lake (DELA) DB 9.86 5.29 4.36 4.21 3.84 4.23 4.26
13 US-xDS Disney Wilderness Preserve (DSNY) GR 10.21 3.03 3.64 3.25 3.33 2.67 3.35
14 US-xGR Great Smoky Mountains National Park, Twin Creeks (GRSM) DB 6.51 6.06 4.21 3.99 3.87 4.12 3.94
15 US-xHA Harvard Forest (HARV) DB 5.24 4.50 3.05 2.91 2.60 2.73 2.92
16 US-xHE Healy (HEAL) TN 5.03 1.72 2.00 1.65 1.15 1.77 1.17
17 US-xJE Jones Ecological Research Center (JERC) DB 6.07 4.37 3.75 3.46 3.19 3.43 3.41
18 US-xJR Jornada LTER (JORN) GR 2.56 1.79 1.25 1.23 1.17 1.76 1.26
19 US-xKA Konza Prairie Biological Station - Relocatable (KONA) AG 6.57 3.64 3.02 2.95 2.61 3.05 3.56
20 US-xKZ Konza Prairie Biological Station (KONZ) GR 6.88 3.57 2.60 2.23 2.21 2.06 2.16
21 US-xLE Lenoir Landing (LENO) DB 6.83 5.27 4.92 4.53 4.32 4.25 4.19
22 US-xMB Moab (MOAB) GR 8.63 1.86 0.73 0.71 0.68 1.54 0.68
23 US-xNG Northern Great Plains Research Laboratory (NOGP) GR 5.07 2.29 1.67 1.59 1.46 1.55 1.96
24 US-xNQ Onaqui-Ault (ONAQ) SH 4.01 1.73 1.17 1.11 1.05 1.90 1.21
25 US-xNW Niwot Ridge Mountain Research Station (NIWO) TN 9.63 1.46 0.85 0.80 0.74 1.86 1.76
26 US-xRM Rocky Mountain National Park, CASTNET (RMNP) EN 8.49 3.18 2.70 2.31 1.92 2.45 1.94
27 US-xRN Oak Ridge National Lab (ORNL) DB 5.75 5.11 4.43 4.22 3.68 3.92 3.61
28 US-xSB Ordway-Swisher Biological Station (OSBS) EN 7.77 3.40 3.06 2.78 2.63 3.17 3.08
29 US-xSC Smithsonian Conservation Biology Institute (SCBI) DB 4.53 4.11 3.36 3.00 2.86 3.12 2.98
30 US-xSE Smithsonian Environmental Research Center (SERC) DB 6.79 4.62 3.40 3.21 3.08 3.35 3.32
31 US-xSJ San Joaquin Experimental Range (SJER) EN 5.13 4.23 3.23 3.11 3.02 3.23 3.81
32 US-xSL North Sterling, CO (STER) AG 6.10 2.40 2.00 1.93 1.83 1.90 2.08
33 US-xSP Soaproot Saddle (SOAP) EN 3.57 3.58 4.16 3.86 2.50 2.78 2.67
34 US-xSR Santa Rita Experimental Range (SRER) SH 3.22 2.19 4.23 3.63 1.18 2.42 1.12
35 US-xST Steigerwaldt Land Services (STEI) DB 3.96 4.06 2.44 2.10 1.91 2.34 1.78
36 US-xTA Talladega National Forest (TALL) EN 5.36 5.16 4.53 4.33 3.34 3.77 3.98
37 US-xTE Lower Teakettle (TEAK) EN 6.11 3.07 2.99 2.93 2.53 2.48 2.95
38 US-xTL Toolik (TOOL) TN 134.54 1.44 1.24 0.79 0.66 2.12 0.96
39 US-xTR Treehaven (TREE) DB 5.13 3.89 2.41 2.35 2.12 2.61 2.21
40 US-xUK The University of Kansas Field Station (UKFS) DB 5.16 4.12 3.20 3.06 2.92 3.56 2.92
41 US-xUN University of Notre Dame Environmental Research Center (UNDE) DB 3.79 3.81 2.51 2.47 2.11 2.53 1.92
42 US-xWD Woodworth (WOOD) GR 5.16 2.21 1.77 1.61 1.49 1.52 1.70
43 US-xWR Wind River Experimental Forest (WREF) EN 7.53 5.31 5.89 5.82 4.67 4.92 4.68
44 US-xYE Yellowstone Northern Range (Frog Rock) (YELL) EN 5.05 2.49 2.10 2.05 1.61 1.71 1.74

AVERAGE 12.28 3.51 3.05 2.82 2.45 2.88 2.70

Table 4
A comparison of the R2 in predicting FCO2 using seven machine learning models in a stratified leave-one-site-out cross-validation
experimental setting

Test Set Site Code Site Name Primary Vegtype Linear reg Stepwise Decision Tree Random Forest XGBoost NN (1-layer) NN (deep)
1 PR-xGU Guanica Forest (GUAN) EB 0.07 0.21 -0.35 -0.12 0.52 -0.40 -0.67
2 PR-xLA Lajas Experimental Station (LAJA) EB 0.31 0.40 0.29 0.45 0.53 0.56 0.47
3 US-xAB Abby Road (ABBY) EN -0.37 0.48 0.42 0.61 0.69 0.67 0.65
4 US-xBA Barrow Environmental Observatory (BARR) TN -16320.00 -0.51 -1.03 -0.97 0.34 -6.54 0.29
5 US-xBL Blandy Experimental Farm (BLAN) DB 0.54 0.57 0.79 0.80 0.81 0.77 0.76
6 US-xBN Caribou Creek - Poker Flats Watershed (BONA) EN -33.28 0.07 0.28 0.35 0.40 -0.17 0.41
7 US-xBR Bartlett Experimental Forest (BART) DB 0.34 0.53 0.73 0.77 0.81 0.76 0.77
8 US-xCL LBJ National Grassland (CLBJ) DB 0.35 0.58 0.54 0.58 0.64 0.59 0.74
9 US-xCP Central Plains Experimental Range (CPER) GR -4.44 -0.85 0.42 0.50 0.55 0.22 0.33
10 US-xDC Dakota Coteau Field School (DCFS) GR -28.15 0.49 0.78 0.80 0.82 0.81 0.79
11 US-xDJ Delta Junction (DEJU) EN -3.89 0.17 0.32 0.57 0.67 0.61 0.67
12 US-xDL Dead Lake (DELA) DB -0.89 0.46 0.63 0.66 0.71 0.65 0.65
13 US-xDS Disney Wilderness Preserve (DSNY) GR -3.07 0.64 0.48 0.59 0.57 0.72 0.56
14 US-xGR Great Smoky Mountains National Park, Twin Creeks (GRSM) DB 0.39 0.48 0.75 0.77 0.79 0.76 0.78
15 US-xHA Harvard Forest (HARV) DB 0.31 0.49 0.77 0.79 0.83 0.81 0.79
16 US-xHE Healy (HEAL) TN -4.45 0.36 0.14 0.41 0.72 0.33 0.71
17 US-xJE Jones Ecological Research Center (JERC) DB 0.19 0.58 0.69 0.74 0.78 0.74 0.75
18 US-xJR Jornada LTER (JORN) GR -2.75 -0.85 0.11 0.13 0.21 -0.77 0.09
19 US-xKA Konza Prairie Biological Station - Relocatable (KONA) AG -1.33 0.28 0.51 0.53 0.63 0.50 0.31
20 US-xKZ Konza Prairie Biological Station (KONZ) GR -0.85 0.50 0.74 0.81 0.81 0.83 0.82
21 US-xLE Lenoir Landing (LENO) DB 0.19 0.52 0.58 0.64 0.67 0.69 0.69
22 US-xMB Moab (MOAB) GR -145.46 -5.79 -0.05 0.01 0.09 -3.66 0.09
23 US-xNG Northern Great Plains Research Laboratory (NOGP) GR -2.17 0.36 0.66 0.69 0.74 0.71 0.52
24 US-xNQ Onaqui-Ault (ONAQ) SH -7.30 -0.54 0.29 0.37 0.43 -0.87 0.25
25 US-xNW Niwot Ridge Mountain Research Station (NIWO) TN -120.13 -1.77 0.05 0.17 0.28 -3.53 -3.04
26 US-xRM Rocky Mountain National Park, CASTNET (RMNP) EN -5.45 0.09 0.35 0.52 0.67 0.46 0.66
27 US-xRN Oak Ridge National Lab (ORNL) DB 0.25 0.41 0.56 0.60 0.69 0.65 0.71
28 US-xSB Ordway-Swisher Biological Station (OSBS) EN -1.39 0.54 0.63 0.69 0.73 0.60 0.62
29 US-xSC Smithsonian Conservation Biology Institute (SCBI) DB 0.42 0.52 0.68 0.74 0.77 0.72 0.75
30 US-xSE Smithsonian Environmental Research Center (SERC) DB -0.01 0.53 0.75 0.77 0.79 0.75 0.76
31 US-xSJ San Joaquin Experimental Range (SJER) EN -0.51 -0.03 0.40 0.44 0.47 0.40 0.17
32 US-xSL North Sterling, CO (STER) AG -4.83 0.10 0.38 0.42 0.47 0.44 0.32
33 US-xSP Soaproot Saddle (SOAP) EN -0.98 -0.98 -1.68 -1.31 0.03 -0.19 -0.10
34 US-xSR Santa Rita Experimental Range (SRER) SH -7.73 -3.04 -14.04 -10.11 -0.18 -3.93 -0.06
35 US-xST Steigerwaldt Land Services (STEI) DB 0.53 0.50 0.82 0.87 0.89 0.83 0.90
36 US-xTA Talladega National Forest (TALL) EN 0.39 0.44 0.57 0.60 0.76 0.70 0.66
37 US-xTE Lower Teakettle (TEAK) EN -2.27 0.17 0.22 0.25 0.44 0.46 0.24
38 US-xTL Toolik (TOOL) TN -12181.30 -0.40 -0.03 0.58 0.71 -2.01 0.38
39 US-xTR Treehaven (TREE) DB 0.24 0.57 0.83 0.84 0.87 0.80 0.86
40 US-xUK The University of Kansas Field Station (UKFS) DB 0.24 0.52 0.71 0.73 0.76 0.64 0.76
41 US-xUN University of Notre Dame Environmental Research Center (UNDE) DB 0.56 0.55 0.81 0.81 0.86 0.80 0.89
42 US-xWD Woodworth (WOOD) GR -2.01 0.45 0.65 0.71 0.75 0.74 0.67
43 US-xWR Wind River Experimental Forest (WREF) EN -0.65 0.18 -0.01 0.02 0.37 0.30 0.36
44 US-xYE Yellowstone Northern Range (Frog Rock) (YELL) EN -2.28 0.20 0.43 0.46 0.67 0.62 0.61

AVERAGE -656.42 -0.02 0.06 0.23 0.60 -0.01 0.44
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Figure 4: The twenty most important features of our XGBoost model

corresponding L1SO remainder for each site, ordered by
ecological domain, is shown in Figure 5.

The L1SO remainder gives us a reasonable way to
identify sites that are difficult to predict without having that
site’s data available in the training set. We identified five
NEON terrestrial sites that had a L1SO remainder greater
than 0.85. These sites are Guanica Forest (GUAN), Lajas
Experimental Station (LAJA), LBJ National Grassland
(CLBJ), Disney Wilderness Preserve (DSNY), and Wind
River Experimental Forest (WREF). There are several
reasons that can justify why these sites in particular may be
difficult for a model in a L1SO scenario. Firstly, Guanica
Forest and Lajas Experimental Station are the only two
sites in Puerto Rico and in ecological domain 4. In addition,
these two sites are the only two whose primary vegetation
type is evergreen broadleaf (EB).

Wind River Experimental Forest is a site in Washington
state, located in an old growth forest with very tall trees
with a real summer dry-down that restricts FCO2. Overall,
Wind River Experimental Forest is a very unusual site in
comparison with the other NEON terrestrial sites.

For each of these five sites, we created time series of
predicted FCO2 values and actual FCO2values reported both
in half hourly increments, and aggregated as an average for
each day of the year, as well as a scatter plot of predicted
FCO2 vs. actual FCO2 for analysis. We then compared these
results to sites with the same primary vegetation types for
which our model had superior performance. In the case of
Guanica Forest and Lajas Experimental Station, since there
were no other sites with the same primary vegetation type,
both sites are included in Figure 6.

Steigerwaldt Land Services (STEI), Dakota Coteau Field
School (DCFS), and Delta Junction (DEJU) were used as

comparison for our other three sites representing primary
vegetation types of DB, GR and EN respectively. These
comparisons are found in Figures 7, 8, and 9.

Note that in most cases we observed large systematic
errors in model performance for our 5 sites with the greatest
L1SO Remainder values. For example, when considering
scatterplots of predicted vs observed FCO2 for LAJA and
WREF, the slope of predicted vs observed FCO2 is less
than 1. At CLBJ, the magnitude of summertime uptake is
under-predicted. At DSNY, the seasonality is represented
well but there is a consistent offset of several 𝜇molm−2s−1,
with predicted values higher than measured values. By
comparison, at STEI, DCFS, and DEJU, the magnitude and
timing of predicted FCO2 is much better.

What is interesting from this analysis is that even on sites
with relatively high L1SO remainder, our model seems to do
a good job on average predicting patterns and dips in daily
average FCO2. It appears that most of the errors associated
with sites with large L1SO remainder can be attributed to
the model being too conservative in its predictions, that is
predicting values closer to zero than the true measured flux
values. As seen by the right column of plots in Figures 7-
9, sites of the same primary vegetation type where our
model had stronger performance seem to generally have
less large positive and negative flux values. This makes
sense, since our model learns to minimize prediction error,
and since each error ends up being squared, predicting
very large positive or negative values in general would be
more heavily penalized. A good example of this fact can be
seen in the half-hourly time series for Lajas Experimental
Station in Figure 6. This site has a mix of large positive
and negative observed flux values, and our model rarely
made large positive or negative predictions. Compare this
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Figure 5: Visualization of XGBoost L1SO RMSE remainder organized by domain number (shown as a prefix to the site code)

to a site like Delta Junction in Figure 8. Here, there are a
number of large negative observed flux values, but not as
many large positive values. Spikes in the negative direction
are less erratic, and model predictions, as a result, more
closely represented measured flux values. When looking at
scatter plots of predicted flux vs. observed flux, one can see
that the results for sites in the right hand column are more
tightly clustered about the 1:1 line, resulting in higher 𝑅2

scores.

4.2. Relevance of L1SO predictions for unseen
sites

Historically, process-based models have been
considered the “gold standard” for predicting ecosystem
CO2 fluxes. However, past model-data evaluation studies
have shown that although process-based models can often
predict daily- or sub-daily fluxes that agree reasonably well
with measured values, model performance on longer time
scales (seasonal, annual and inter-annual) is often quite
poor Dietze et al. (2011); Stoy et al. (2013); Keenan et al.
(2012). Models that cannot accurately predict ecosystem
carbon budgets on annual and inter-annual time scales are
not likely to be useful for carbon accounting purposes or
for developing strategies for nature-based climate solutions.
This suggests that alternatives to process-based models are
needed. While machine learning-based models have been
used for flux upscaling for almost two decades Papale and
Valentini (2003); Xiao et al. (2008); Jung et al. (2020),
these analyses have generally attempted to extrapolate
from individual sites to regions and continents using
only remotely-sensed variables as drivers. While this
strategy is intuitively appealing, it is unable to leverage

the site-level characteristics that are undoubtedly relevant
for making fine-scale predictions. Indeed, basic ecosystem
theory suggests that without accounting for these site-level
characteristics such as disturbance and land use history, it is
impossible to predict ecosystem carbon balance. Notably,
we found that site characteristics related to vegetation
type, as well as to soils, were identified as among the
most important features for predicting FCO2. However,
remotely-sensed variables from MODIS such as EVI and
NDVI were found to be more important than site-level
vegetation indices (e.g. Gcc, Rcc) derived from PhenoCam
imagery. We can hypothesize that while PhenoCam imagery
can provide phenological information at a fine spatial
and temporal scale, it may be subject to issues related
to the mismatch of footprints with eddy covariance flux
measurements. In the case of heterogeneous landscapes,
MODIS vegetation indices with larger spatial coverage may
actually be more representative of seasonal variations in
vegetation dynamics within the flux tower footprint.

Finally, we note that although site-level meteorological
and environmental drivers (e.g. air temperature, relative
humidity or VPD, soil temperature, soil moisture, and
precipitation) were not ranked highly in terms of feature
importance, this is not to say that these variables do not
matter. Rather, it is likely that in the context of variation
in FCO2 from the Arctic to the Tropics, from winter
to summer, and from day to night, that the additional
information contributed by these variables explains only
a small amount of the half-hourly variation in FCO2,
although it may contribute greatly to improved estimates of
annual FCO2.
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Figure 6: Time series and scatter plots of FCO2 prediction error for sites with EB primary vegetation type

A persistent challenge in estimating site-level carbon
balance via FCO2 measurements has always been that
small but selectively systematic measurement errors in
30 minute data can accumulate to large errors in annual
integrals Richardson et al. (2012a). In our machine learning
approach, selectively systematic prediction errors could
occur if important meteorological or environmental
variables were not accounted for as covariates. Omission of
these variables might do little to impact the 𝑅2 calculated
on 30 minute values but could seriously impact annual
flux integrals. Adoption of model optimization criteria that
place more weight on reducing selectively systematic bias
(which might not even show up when bias is calculated
over a multi-year dataset) and improving predictive power
on annual and multi-year time scales could be important
for further improving the application of machine learning
methods to carbon accounting and nature-based climate
solutions.

4.3. Leveraging Site-level Data when Standardized
Model Inputs are not Available

Our feature importance plot (Figure 4) shows that,
in spite of our assertion that site-level data are critical
for correctly predicting ecosystem carbon balance, much
of the information needed to predict half-hourly FCO2
actually comes from variables that are already available

from gridded land cover maps (i.e. vegetation type
classifications), satellite data products characterizing
phenology (i.e. EVI, NDVI), and basic energy balance
data that are also widely available as satellite data products
(e.g., net radiation). This suggests that there is the
potential for leveraging the much greater abundance of
AmeriFlux towers, (for which site-level measurements are
not standardized), together with key remotely sensed data
products to generate an initial map of ecosystem carbon
balance. This initial map, when fused with elements of the
analysis presented here, could lead to a hybrid data product
that leverages the sampling intensity of AmeriFlux and the
standardized sampling of NEON. Development of a data
fusion platform such as we describe here is beyond the
scope of the present analysis, but it is potentially an exciting
direction to be pursued in future research.

4.4. Annual carbon sums
For most sites, we managed to obtain low RMSE and

high R2 for predicting the measured half-hourly FCO2,
even in the L1SO analysis (Tables 3 and 4). However, in
the context of carbon accounting and nature-based climate
solutions, it more important to know the overall carbon
balance on an annual time scale. That is, we want to answer
the question of how much carbon (if any) the ecosystem is
removing from the atmosphere and putting into biomass
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Figure 7: Comparison of FCO2 prediction error for sites with DB primary vegetation type. Site with poor model performance
(CLBJ) is on the left and site with better model performance (STEI) on the right.

and soil carbon on an annual basis. This carbon balance
reflects the balance between plant photosynthesis (carbon
uptake, or negative flux) and ecosystem respiration (carbon
release, or positive flux). It is a challenge for models, either
process-based or data-driven, to get the overall carbon
balance correct because of the opposing nature of these
processes on different timescales. For example, in most
ecosystems there is a strong seasonal pattern of carbon
uptake during the growing season and release during the
dormant season. During the growing season there is also
a diurnal pattern of carbon uptake during the day and
release during the night. Annually, the difference between
photosynthesis and respiration is much smaller (0-30%)
than the flux associated with either of these two key
processes.

A model that predicts the annual carbon balance
for an unknown site would be extremely valuable if it
successfully estimated the multi-year mean carbon balance.
The model would be even more useful it if successfully
represented the inter-annual variability in carbon balance.
State-of-the-art process-based models have generally failed
to meet either of these targets (Keenan et al., 2012). Our
results show that across all vegetation types, annual sums
predicted in the L1SO analysis did a surprisingly good job
at hitting the first target (see Table 5). For 29 out of 44

sites (66%), the L1SO-predicted multi-year mean carbon
balance was within ± 50gCm−2y−1 of the “true” value
estimated by gap-filling missing values in the CV analysis.
This is quite remarkable given that the total uncertainty
on the annual carbon balance, derived from gap-filled
FCO2 measurements, is typically estimated to be about ±
50gCm−2y−1 (Richardson et al., 2012b). However, for 7 of
44 sites (16%), the deviation between the L1SO-predicted
multi-year mean and the “true” value was greater than
150gCm−2y−1. Three of these were deciduous broadleaf
forest sites, one was an evergreen needleleaf forest site,
and one was a grassland site. We expect that there may be
land use history, disturbance, or similar factors that might
explain these deviations, but were not included in our
model.

Annual sums predicted in the L1SO analysis also did a
reasonably good job of representing the “true” inter-annual
variability estimated from gap-filled time series. At more
than a quarter of sites (12 of 44, 27%), the correlation of
L1SO-predicted annual sums and the gap-filled annual
sums was greater than 0.75, while for almost half of sites
(21 of 44, 47%) the correlation was greater than 0.50.
While these results are based on at most 5 years of data
per site, they point to the enormous potential of machine
learning to predict not only the long-term carbon balance
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Figure 8: Comparison of FCO2 prediction error for sites with GR primary vegetation type. Site with poor model performance
(DSNY) is on the left and site with better model performance (DCFS) on the right.

of an unknown site, but even the inter-annual variation in
that carbon balance. By comparison, it has been known
for more than a decade that even the most sophisticated
process-based models are unable to capture this inter-annual
variability (Braswell et al., 2005; Siqueira et al., 2006;
Ricciuto et al., 2008), despite accurately capturing the
dynamics of “fast” processes operating on timescales of
hours to days.

5. Conclusions
In this paper, we showed the potential for machine

learning-based models to make more skillful predictions
of FCO2 than state-of-the-art process-based models.
Specifically, we found that an XGBoost model trained
on environmental drivers recorded at 43 locations from
varying ecological domains can predict FCO2 at an
unseen site to within an average error of 2.45𝜇molm−2s−1.
Furthermore, this error reduces significantly–down to
as little as 0.66𝜇molm−2s−1–when a site in the training
data has similar ecological characteristics to the unseen
sites. This suggests that, with strategic placement of
instrumentation to record future training data, there
is potential to predict most locations of interest with
high accuracy. Our research underscores the importance

of integrating advanced modeling techniques into
carbon accounting frameworks, enabling more accurate
quantification of carbon sequestration potential and guiding
the implementation of effective nature-based climate
mitigation strategies.
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Figure 9: Comparison of sites with EN primary vegetation type. Site with poor model performance (WREF) is on the left and
site with better model performance (DEJU) on the right.
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Table of Mean Bias and Correlation Coefficient (r) using L1SO predicted annual carbon sums and 10-fold projections of annual
carbon sums.
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